Prof. Dr. Philipp Rostalski

Head of the Institute


Institute for Electrical Engineering in Medicine
Universität zu Lübeck
Moislinger Allee 53-55
23558 Lübeck
Gebäude 19,

Email:philipp.rostalski(at)uni-luebeck.de
Phone:+49 451 3101 6200
Fax:

 

Research

Research Interests

  • Physiological closed-loop control
  • State- and parameter estimation
  • Dynamic systems and control
  • Graphical models
  • Convex algebraic geometry

 

Curriculum Vitae

Philipp Rostalski was born in Niebüll, Germany in 1978. He received his Diploma in Electrical Engineering (Dipl. Ing.) with focus on Measurement and Control from the Hamburg University of Technology, Germany, in 2004.

In 2005 he joined the Automatic Control Laboratory at ETH Zürich, Switzerland as, where he worked at the interface of algebraic geometry, optimization and control. After several international research exchanges, he completed his Ph.D. in 2009. His thesis was awarded with the ETH Medal for outstanding Ph.D. theses.

In 2009 he joined the Department of Mathematics at UC Berkeley and later in the year 2010 also the Department of Mechanical Engineering as a Feodor Lynen Fellow of the German Alexander von Humboldt Foundation working on problems in applied mathematics, most notably: convex algebraic geometry graphical.

Between 2011 and 2015 he was a research engineer and project manager for mechatronics applications at the Dräger Research Unit in Lübeck, Germany. He was responsable for projects in signal processing and control with focus on pneumatic systems and respiratory care. 

Since 2015 he is the director of the Institute for Electrical Engineering in Medicine, Universität zu Lübeck, Germany.


Selected Publications

Book Chapters

2018

  • Rostalski, Philipp and Kleinewalter, Dennis: Didactic Concept for Teaching in Medical Engineering. in Principles, Structures and Requirements of Excellent Teaching, Deutsche Gesellschaft für Hochschuldidaktik (dghd), 2018
    BibTeX
    @incollection{RoKl18,
     author = {Rostalski, Philipp and Kleinewalter, Dennis},
     abstract = {},
     title = {{Didactic Concept for Teaching in Medical Engineering}},
     publisher = {{Deutsche Gesellschaft f{\"u}r Hochschuldidaktik (dghd)}},
     series = {Blickpunkt Hochschuldidaktik},
     editor = {Tantau, Till and Jansen-Schulz, Bettina},
     booktitle = {{Principles, Structures and Requirements of Excellent Teaching}},
     year = {2018}
    }
    
    
    

2013

  • Rostalski, Philipp and Sturmfels, Bernd: Chapter 5: Dualities. in Semidefinite optimization and convex algebraic geometry, pp. 203-249, 2013
    BibTeX
    @incollection{RoSt13,
     author = {Rostalski, Philipp and Sturmfels, Bernd},
     abstract = {},
     title = {{Chapter 5: Dualities}},
     pages = {203--249},
     isbn = {978-1-61197-228-3},
     series = {MOS-SIAM series on optimization},
     editor = {Blekherman, Grigoriy and Parrilo, Pablo A. and R, Thomas Rekha},
     booktitle = {{Semidefinite optimization and convex algebraic geometry}},
     year = {2013}
    }
    
    
    

2012

  • Laurent, Monique and Rostalski, Philipp: The Approach of Moments for Polynomial Equations. in Handbook on semidefinite, conic and polynomial optimization, no. 166, pp. 25-60, Springer, 2012
    BibTeX
    @incollection{LaRo12,
     author = {Laurent, Monique and Rostalski, Philipp},
     abstract = {},
     title = {{The Approach of Moments for Polynomial Equations}},
     pages = {25--60},
     volume = {166},
     publisher = {Springer},
     isbn = {978-1-4614-0769-0},
     series = {International series in operations research {\&} management science},
     editor = {Anjos, Miguel F. and Lasserre, Jean-Bernard},
     booktitle = {{Handbook on semidefinite, conic and polynomial optimization}},
     year = {2012}
    }
    
    
    

2008

  • Lasserre, Jean-Bernard and Laurent, Monique and Rostalski, Philipp: A Unified Approach to Computing Real and Complex Zeros of Zero-Dimensional Ideals. in Emerging applications of algebraic geometry, no. 149, pp. 125-155, Springer, 2008
    BibTeX
    @incollection{LaLaRo08b,
     author = {Lasserre, Jean-Bernard and Laurent, Monique and Rostalski, Philipp},
     abstract = {},
     title = {{A Unified Approach to Computing Real and Complex Zeros of Zero-Dimensional Ideals}},
     pages = {125--155},
     volume = {149},
     publisher = {Springer},
     isbn = {978-0-387-09685-8},
     series = {The IMA volumes in mathematics and its applications},
     editor = {Putinar, Mihai and Sullivant, Seth},
     booktitle = {{Emerging applications of algebraic geometry}},
     year = {2008}
    }
    
    
    

Journal Publications

2019

  • Abbas, Hossam Seddik and Männel, Georg and Herzog, Christian and Rostalski, Philipp: Tube-Based Model Predictive Control for Linear Parameter-Varying Systems with Bounded Rate of Parameter Variation. Automatica, 2019
    BibTeX
    @article{AbMaHeRo19,
    author = {Abbas, Hossam Seddik and M{\"{a}}nnel, Georg and Herzog, Christian and Rostalski, Philipp},
    year = {2019},
    journal = {Automatica},
    title = {{Tube-Based Model Predictive Control for Linear Parameter-Varying Systems with Bounded Rate of Parameter Variation}}
    }
    
  • Herzog, Christian and Petersen, Eike and Rostalski, Philipp: Iterative Approximate Nonlinear Inference via Gaussian Message Passing on Factor Graphs. IEEE Contr. Syst. Letters, no. 3, 2019
    BibTeX
    @article{HePeRo19,
    author = {Herzog, Christian and Petersen, Eike and Rostalski, Philipp},
    year = {2019},
    journal = {IEEE Contr. Syst. Letters},
    volume = {3},
    number = {4},
    title = {{Iterative Approximate Nonlinear Inference via Gaussian Message Passing on Factor Graphs}},
    doi = {https://dx.doi.org/10.1109/LCSYS.2019.2919260}
    }
    
  • Petersen, Eike and Rostalski, Philipp: A Comprehensive Mathematical Model of Motor Unit Pool Organization, Surface Electromyography and Force Generation. frontiers in Physiology, 2019
    BibTeX Link
    @article{PeRo19,
     author = {Petersen, Eike and Rostalski, Philipp},
     abstract = {},
     year = {2019},
     title = {{A Comprehensive Mathematical Model of Motor Unit Pool Organization, Surface Electromyography and Force Generation}},
     journal = {frontiers in Physiology},
     url = {{https://www.frontiersin.org/articles/10.3389/fphys.2019.00176/abstract}}
    }
    
    
    

2017

  • Becher, Tobias and Rostalski, Philipp and Kott, Matthias and Adler, Andy and Schädler, Dirk and Weiler, Norbert and Frerichs, Inez and Weiler, N.: Global and regional assessment of sustained inflation pressure-volume curves in patients with acute respiratory distress syndrome. Phys. Meas., no. 38, pp. 1132-1144, 2017
    BibTeX
    @article{BeRoKoAd17,
     author = {Becher, Tobias and Rostalski, Philipp and Kott, Matthias and Adler, Andy and Sch{\"a}dler, Dirk and Weiler, Norbert and Frerichs, Inez and Weiler, N.},
     abstract = {OBJECTIVE
    
    Static or quasi-static pressure-volume (P-V ) curves can be used to determine the lung mechanical properties of patients suffering from acute respiratory distress syndrome (ARDS). According to the traditional interpretation, lung recruitment occurs mainly below the lower point of maximum curvature (LPMC) of the inflation P-V curve. Although some studies have questioned this assumption, setting of positive end-expiratory pressure 2 cmH2O above the LPMC was part of a 'lung-protective' ventilation strategy successfully applied in several clinical trials. The aim of our study was to quantify the amount of unrecruited lung at different clinically relevant points of the P-V curve.
    
    APPROACH
    
    P-V curves and electrical impedance tomography (EIT) data from 30 ARDS patients were analysed. We determined the regional opening pressures for every EIT image pixel and fitted the global P-V curves to five sigmoid model equations to determine the LPMC, inflection point (IP) and upper point of maximal curvature (UPMC). Points of maximal curvature and IP were compared between the models by one-way analysis of variance (ANOVA). The percentages of lung pixels remaining closed ('unrecruited lung') at LPMC, IP and UPMC were calculated from the number of lung pixels exhibiting regional opening pressures higher than LPMC, IP and UPMC and were also compared by one-way ANOVA.
    
    MAIN RESULTS
    
    As results, we found a high variability of LPMC values among the models, a smaller variability of IP and UPMC values. We found a high percentage of unrecruited lung at LPMC, a small percentage of unrecruited lung at IP and no unrecruited lung at UPMC.
    
    SIGNIFICANCE
    
    Our results confirm the notion of ongoing lung recruitment at pressure levels above LPMC for all investigated model equations and highlight the importance of a regional assessment of lung recruitment in patients with ARDS.},
     year = {2017},
     title = {{Global and regional assessment of sustained inflation pressure-volume curves in patients with acute respiratory distress syndrome}},
     pages = {1132--1144},
     volume = {38},
     number = {6},
     journal = {Phys. Meas.},
     note = {Journal Article}
    }
    
    
    
  • Becher, Tobias and Schädler, Dirk and Rostalski, Philipp and Zick, Günther and Frerichs, Inez and Weller, Norbert: Determination of respiratory system compliance during pressure support ventilation by small variations of pressure support. J. Clin. Monit. Comput., 2017
    BibTeX
    @article{BeScRoZi17,
     author = {Becher, Tobias and Sch{\"a}dler, Dirk and Rostalski, Philipp and Zick, G{\"u}nther and Frerichs, Inez and Weller, Norbert},
     abstract = {},
     year = {2017},
     title = {{Determination of respiratory system compliance during pressure support ventilation by small variations of pressure support}},
     journal = {J. Clin. Monit. Comput.},
     note = {submitted}
    }
    
    
    
  • Petersen, Eike and Buchner, Herbert and Eger, Marcus and Rostalski, Philipp: Convolutive blind source separation of surface EMG measurements of the respiratory muscles. Biomed. Tech., no. 62, pp. 171-181, 2017
    BibTeX
    @article{PeBuEgRo17,
     author = {Petersen, Eike and Buchner, Herbert and Eger, Marcus and Rostalski, Philipp},
     abstract = {Electromyography (EMG) has long been used for the assessment of muscle function and activity and has recently been applied to the control of medical ventilation. For this application, the EMG signal is usually recorded invasively by means of electrodes on a nasogastric tube which is placed inside the esophagus in order to minimize noise and crosstalk from other muscles. Replacing these invasive measurements with an EMG signal obtained non-invasively on the body surface is difficult and requires techniques for signal separation in order to reconstruct the contributions of the individual respiratory muscles. In the case of muscles with small cross-sectional areas, or with muscles at large distances from the recording site, solutions to this problem have been proposed previously. The respiratory muscles, however, are large and distributed widely over the upper body volume. In this article, we describe an algorithm for convolutive blind source separation (BSS) that performs well even for large, distributed muscles such as the respiratory muscles, while using only a small number of electrodes. The algorithm is derived as a special case of the TRINICON general framework for BSS. To provide evidence that it shows potential for separating inspiratory, expiratory, and cardiac activities in practical applications, a joint numerical simulation of EMG and ECG activities was performed, and separation success was evaluated in a variety of noise settings. The results are promising.
    
    ~
    
    Electromyography (EMG) has long been used for the assessment of muscle function and activity and has recently been applied to the control of medical ventilation. For this application, the EMG signal is usually recorded invasively by means of electrodes on a nasogastric tube which is placed inside the esophagus in order to minimize noise and crosstalk from other muscles. Replacing these invasive measurements with an EMG signal obtained non-invasively on the body surface is difficult and requires techniques for signal separation in order to reconstruct the contributions of the individual respiratory muscles. In the case of muscles with small cross-sectional areas, or with muscles at large distances from the recording site, solutions to this problem have been proposed previously. The respiratory muscles, however, are large and distributed widely over the upper body volume. In this article, we describe an algorithm for convolutive blind source separation (BSS) that performs well even for large, distributed muscles such as the respiratory muscles, while using only a small number of electrodes. The algorithm is derived as a special case of the TRINICON general framework for BSS. To provide evidence that it shows potential for separating inspiratory, expiratory, and cardiac activities in practical applications, a joint numerical simulation of EMG and ECG activities was performed, and separation success was evaluated in a variety of noise settings. The results are promising.
    
    // 
    
    Electromyography (EMG) has long been used for the assessment of muscle function and activity and has recently been applied to the control of medical ventilation. For this application, the EMG signal is usually recorded invasively by means of electrodes on a nasogastric tube which is placed inside the esophagus in order to minimize noise and crosstalk from other muscles. Replacing these invasive measurements with an EMG signal obtained non-invasively on the body surface is difficult and requires techniques for signal separation in order to reconstruct the contributions of the individual respiratory muscles. In the case of muscles with small cross-sectional areas, or with muscles at large distances from the recording site, solutions to this problem have been proposed previously. The respiratory muscles, however, are large and distributed widely over the upper body volume. In this article, we describe an algorithm for convolutive blind source separation (BSS) that performs well even for large, distributed muscles such as the respiratory muscles, while using only a small number of electrodes. The algorithm is derived as a special case of the TRINICON general framework for BSS. To provide evidence that it shows potential for separating inspiratory, expiratory, and cardiac activities in practical applications, a joint numerical simulation of EMG and ECG activities was performed, and separation success was evaluated in a variety of noise settings. The results are promising.},
     year = {2017},
     title = {{Convolutive blind source separation of surface EMG measurements of the respiratory muscles}},
     pages = {171--181},
     volume = {62},
     number = {2},
     journal = {Biomed. Tech.},
     note = {Evaluation Studies
    
    Journal Article}
    }
    
    
    

2015

  • Ziaian, Dammon and Rostalski, Philipp and Berggreen, A. E. and Brandt, S. and Grossherr, M. and Gehring, H. and Hengstenberg, Andreas and ZImmermann, Stefan: Improving Systems Dynamics by Means of Advanced Signal Processing: Mathematical, Laboratorial and Clinical Evaluation of Propofol Monitoring in Breathing Gas. Sensors & Transducers, no. 193, pp. 145-153, 2015
    BibTeX
    @article{ZiRoBeBr15,
     author = {Ziaian, Dammon and Rostalski, Philipp and Berggreen, A. E. and Brandt, S. and Grossherr, M. and Gehring, H. and Hengstenberg, Andreas and ZImmermann, Stefan},
     abstract = {},
     year = {2015},
     title = {{Improving Systems Dynamics by Means of Advanced Signal Processing: Mathematical, Laboratorial and Clinical Evaluation of Propofol Monitoring in Breathing Gas}},
     pages = {145--153},
     volume = {193},
     number = {10},
     journal = {Sensors {\&} Transducers}
    }
    
    
    
  • Bhardwaj, Avinash and Rostalski, Philipp and Sanyal, Raman: Deciding Polyhedrality of Spectrahedra. SIAM J. Optim., no. 25, pp. 1873-1884, 2015
    BibTeX
    @article{BhRoSa15,
     author = {Bhardwaj, Avinash and Rostalski, Philipp and Sanyal, Raman},
     abstract = {},
     year = {2015},
     title = {{Deciding Polyhedrality of Spectrahedra}},
     pages = {1873--1884},
     volume = {25},
     number = {3},
     journal = {SIAM J. Optim.}
    }
    
    
    

2013

  • Lasserre, Jean-Bernard and Laurent, Monique and Mourrain, Bernard and Rostalski, Philipp and Trébuchet, Philippe: Moment matrices, border bases and real radical computation. J. Symb. Computation, no. 51, pp. 63-85, 2013
    BibTeX
    @article{LaLaMoRo13,
     author = {Lasserre, Jean-Bernard and Laurent, Monique and Mourrain, Bernard and Rostalski, Philipp and Tr{\'e}buchet, Philippe},
     abstract = {In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is finite. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-definite programming. While the border basis algorithms of [17] are efficient and numerically stable for computing complex roots, algorithms based on moment matrices [12] allow the incorporation of additional polynomials, e.g., to re- strict the computation to real roots or to eliminate multiple solutions. The proposed algorithm can be used to compute a border basis of the input ideal and, as opposed to other approaches, it can also compute the quotient structure of the (real) radical ideal directly, i.e., without prior algebraic techniques such as Gr ̈obner bases. It thus combines the strength of existing algorithms and provides a unified treatment for the computation of border bases for the ideal, the radical ideal and the real radical ideal.},
     year = {2013},
     title = {{Moment matrices, border bases and real radical computation}},
     pages = {63--85},
     volume = {51},
     journal = {J. Symb. Computation}
    }
    
    
    

2011

  • Rostalski, Philipp and Fotiou, Ioannis A. and Bates, Daniel J. and Beccuti, A. Giovanni and Morari, Manfred: Numerical Algebraic Geometry for Optimal Control Applications. SIAM J. Optim., no. 21, pp. 417-437, 2011
    BibTeX
    @article{RoFoBaBe11,
     author = {Rostalski, Philipp and Fotiou, Ioannis A. and Bates, Daniel J. and Beccuti, A. Giovanni and Morari, Manfred},
     abstract = {},
     year = {2011},
     title = {{Numerical Algebraic Geometry for Optimal Control Applications}},
     pages = {417--437},
     volume = {21},
     number = {2},
     journal = {SIAM J. Optim.}
    }
    
    
    

2010

  • Rostalski, Philipp and Sturmfels, Bernd: Dualities in Convex Algebraic Geometry. Rendiconti di Matematica, no. 30, 2010
    BibTeX
    @article{RoSt10,
     author = {Rostalski, Philipp and Sturmfels, Bernd},
     abstract = {},
     year = {2010},
     title = {{Dualities in Convex Algebraic Geometry}},
     volume = {30},
     journal = {Rendiconti di Matematica}
    }
    
    
    

2009

  • Lasserre, Jean-Bernard and Laurent, Monique and Rostalski, Philipp: A prolongation-projection algorithm for computing the finite real variety of an ideal. Theoretical Comput. Sci., no. 410, pp. 2685-2700, 2009
    BibTeX
    @article{LaLaRo09,
     author = {Lasserre, Jean-Bernard and Laurent, Monique and Rostalski, Philipp},
     abstract = {},
     year = {2009},
     title = {{A prolongation--projection algorithm for computing the finite real variety of an ideal}},
     pages = {2685--2700},
     volume = {410},
     number = {27-29},
     journal = {Theoretical Comput. Sci.}
    }
    
    
    

2008

  • Lasserre, Jean-Bernard and Laurent, Monique and Rostalski, Philipp: Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals. Found. Comput. Math., no. 8, pp. 607-647, 2008
    BibTeX
    @article{LaLaRo08,
     author = {Lasserre, Jean-Bernard and Laurent, Monique and Rostalski, Philipp},
     abstract = {},
     year = {2008},
     title = {{Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals}},
     pages = {607--647},
     volume = {8},
     number = {5},
     journal = {Found. Comput. Math.}
    }
    
    
    

2007

  • Rostalski, Philipp and Besselmann, T. and Bari`c, M. and van Belzen, F. and Morari, Manfred: A hybrid approach to modelling, control and state estimation of mechanical systems with backlash. Int. J. Contr., no. 80, pp. 1729-1740, 2007
    BibTeX
    @article{RoBeBava07,
     author = {Rostalski, Philipp and Besselmann, T. and Bari{\'c}, M. and {van Belzen}, F. and Morari, Manfred},
     abstract = {},
     year = {2007},
     title = {{A hybrid approach to modelling, control and state estimation of mechanical systems with backlash}},
     pages = {1729--1740},
     volume = {80},
     number = {11},
     journal = {Int. J. Contr.}
    }
    
    
    

2006

  • Fotiou, Ioannis A. and Rostalski, Philipp and Parrilo, Pablo A. and Morari, Manfred: Parametric optimization and optimal control using algebraic geometry methods. Int. J. Contr., no. 79, pp. 1340-1358, 2006
    BibTeX
    @article{FoRoPaMo06,
     author = {Fotiou, Ioannis A. and Rostalski, Philipp and Parrilo, Pablo A. and Morari, Manfred},
     abstract = {},
     year = {2006},
     title = {{Parametric optimization and optimal control using algebraic geometry methods}},
     pages = {1340--1358},
     volume = {79},
     number = {11},
     journal = {Int. J. Contr.}
    }
    
    
    

Conference Publications

2018

  • Herzog, Christian and Tantau, Till and Rostalski, Philipp: Study Program `Robotics and Autonomous Systems` at the University of Lübeck. in Proc. 12th Europ. Workshop Microelectr. Educat., 2018
    BibTeX
    @inproceedings{HeTaRo18,
     author = {Herzog, Christian and Tantau, Till and Rostalski, Philipp},
     title = {Study Program 'Robotics and Autonomous Systems' at the University of L{\"u}beck},
     booktitle = {Proc. 12th Europ. Workshop Microelectr. Educat.},
     year = {2018}
    }
  • Petersen, Eike and Rostalski, Philipp: Static Nonlinear Transformation of Excitation Model Input as an Alternative to Feedback Control in EMG-Force Models. in XXII Congr. Intl. Soc. Electrophysiology and Kinesiology (ISEK), Dublin, 2018
    BibTeX
    @inproceedings{PeRo18e,
    address = {Dublin},
    year = {2018},
    author = {Petersen, Eike and Rostalski, Philipp},
    booktitle = {XXII Congr. Intl. Soc. Electrophysiology and Kinesiology (ISEK)},
    title = {{Static Nonlinear Transformation of Excitation Model Input as an Alternative to Feedback Control in EMG-Force Models}},
    }
    
  • Olbrich, Michael and Petersen, Eike and Hoffmann, Christian and Rostalski, Philipp: Sparse Estimation for the Assessment of Muscular Activity based on sEMG Measurements. in Proc. 18th Symp. Syst. Ident., 2018
    BibTeX
    @inproceedings{OlPeHoRo18,
     author = {Olbrich, Michael and Petersen, Eike and Hoffmann, Christian and Rostalski, Philipp},
     abstract = {},
     title = {{Sparse Estimation for the Assessment of Muscular Activity based on sEMG Measurements}},
     year = {2018},
     booktitle = {Proc. 18th Symp. Syst. Ident.}
    }
    
    
    
  • Petersen, Eike and Hoffmann, Christian and Rostalski, Philipp: On Approximate Nonlinear Gaussian Message Passing on Factor Graphs. in Proc. Stat. Sig. Proc. Workshop, 2018
    BibTeX
    @inproceedings{PeHoRo18,
     author = {Petersen, Eike and Hoffmann, Christian and Rostalski, Philipp},
     abstract = {},
     title = {{On Approximate Nonlinear Gaussian Message Passing on Factor Graphs}},
     year = {2018},
     booktitle = {Proc. Stat. Sig. Proc. Workshop}
    }
    
    
    
  • Petersen, Eike and Rostalski, Philipp: Mathematical Analysis of a Model of Intracellular Action Potential Generation. in XXII Congr. Intl. Soc. Electrophysiology and Kinesiology (ISEK), Dublin, 2018
    BibTeX
    @inproceedings{PeRo18d,
    address = {Dublin},
    year = {2018},
    author = {Petersen, Eike and Rostalski, Philipp},
    booktitle = {XXII Congr. Intl. Soc.  Electrophysiology and Kinesiology (ISEK)},
    title = {{Mathematical Analysis of a Model of Intracellular Action Potential Generation}},
    }
    
  • Petersen, Eike and Kahl, Lorenz and Rostalski, Philipp: Electromyography as a tool for personalized rehabilitation. in 52nd Ann. Conf. Ger. Soc. Biomed. Eng. (DGBMT within VDE), Aachen, 2018
    BibTeX
    @inproceedings{PeKaRo18,
    address = {Aachen},
    year = {2018},
    author = {Petersen, Eike and Kahl, Lorenz and Rostalski, Philipp},
    booktitle = {52nd Ann. Conf. Ger. Soc. Biomed. Eng. (DGBMT within VDE)},
    title = {{Electromyography as a tool for personalized rehabilitation}}
    }
    
  • Nawaz, Ayla S. and Pfeiffer, Sven and Lichtenberg, Gerwald and Rostalski, Philipp: Anomaly Detection for the European XFEL using a Nonlinear Parity Space Method. in 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, 2018
    BibTeX
    @inproceedings{NaPfLiRo18,
     author = {Nawaz, Ayla S. and Pfeiffer, Sven and Lichtenberg, Gerwald and Rostalski, Philipp},
     title = {Anomaly Detection for the European XFEL using a Nonlinear Parity Space Method},
     booktitle = {10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes},
     year = {2018}
    }
  • Nawaz, Ayla S. and Pfeiffer, Sven and Lichtenberg, Gerwald and Rostalski, Philipp: Anomaly Detection for Cavity Signals - Results from the European XFEL. in 9th International Particle Accelerator Conference, 2018
    BibTeX
    @inproceedings{NaPfLiRo18b,
     author = {Nawaz, Ayla S. and Pfeiffer, Sven and Lichtenberg, Gerwald and Rostalski, Philipp},
     title = {Anomaly Detection for Cavity Signals - Results from the European XFEL},
     booktitle = {9th International Particle Accelerator Conference},
     year = {2018}
    }
  • Männel, Georg and Hoffmann, Christian and Rostalski, Philipp: A Robust Model Predictive Control Approach to Intelligent Respiratory Support. in roc. Conf. Contr. Technol. Applicat., 2018
    BibTeX
    @inproceedings{MaHoRo18,
     author = {M{\"a}nnel, Georg and Hoffmann, Christian and Rostalski, Philipp},
     abstract = {},
     title = {{A Robust Model Predictive Control Approach to Intelligent Respiratory Support}},
     year = {2018},
     booktitle = {Proc. Conf. Contr. Technol. Applicat.}
    }
    
    
    

2017

  • Graßhoff, Jan and Männel, Georg and Rostalski, Philipp: Nonparametric modeling of quasi-periodic signals - application to esophageal pressure filtering. in nn. Conf. German Soc. Biomed. Eng., no. 62, pp. 356-363, 2017
    BibTeX
    @inproceedings{GrMaRo17,
     author = {Graßhoff, Jan and M{\"a}nnel, Georg and Rostalski, Philipp},
     abstract = {},
     title = {{Nonparametric modeling of quasi-periodic signals -- application to esophageal pressure filtering}},
     pages = {356--363},
     volume = {62},
     series = {Biomedical Engineering / Biomedizinische Technik, Abstract and Poster in Session 6. Biosignal Processing and Monitoring I},
     year = {2017},
     booktitle = {Ann. Conf. German Soc. Biomed. Eng.}
    }
    
    
    
  • Hoffmann, Christian and Rostalski, Philipp: Linear Optimal Control on Factor Graphs - A Message Passing Perspective. in Proc. 20th IFAC World Congress, 2017
    BibTeX
    @inproceedings{HoRo17,
     author = {Hoffmann, Christian and Rostalski, Philipp},
     abstract = {},
     title = {{Linear Optimal Control on Factor Graphs - A Message Passing Perspective}},
     year = {2017},
     booktitle = {Proc. 20th IFAC World Congress}
    }
    
    
    
  • Graßhoff, Jan and Petersen, Eike and Eger, Marcus and Bellani, Giacomo and Rostalski, Philipp: A Template Subtraction Method for the Removal of Cardiogenic Oscillations on Esophageal Pressure Signals. in roc. 39th Ann. Int. Conf. Eng. Med. Biol. Soc., 2017
    BibTeX
    @inproceedings{GrPeEgBe17,
     author = {Graßhoff, Jan and Petersen, Eike and Eger, Marcus and Bellani, Giacomo and Rostalski, Philipp},
     abstract = {Esophageal pressure (Pes) is usually measured in patients receiving mechanical ventilation and is used for the assessment of lung mechanics. However, its interpretation is complicated by the presence of cardiogenic oscillations (CGO). In this article we present a novel method for the reduction of CGO based on the identification of pressure templates. Similar approaches are known for the removal of electrocardiographic (ECG) artifacts from the electromyogram (EMG). The proposed method is tested on clinical recordings of patients under assisted spontaneous ventilation. Besides the improvement of the respiratory signals, the identified CGO templates can be used diagnostically when viewed in relation to corresponding ECG data. This approach is illustrated on a few sample datasets.},
     title = {{A Template Subtraction Method for the Removal of Cardiogenic Oscillations on Esophageal Pressure Signals}},
     year = {2017},
     booktitle = {Proc. 39th Ann. Int. Conf. Eng. Med. Biol. Soc.}
    }
    
    
    
  • Hoffmann, Christian and Petersen, Eike and Handzsuj, Thomas and Bellani, Giacomo and Rostalski, Philipp: A Factor Graph-Based Change Point Detection Algorithm With an Application to sEMG-Onset and Activity Detection. in Ann. Conf. German Soc. Biomed. Eng., no. 62, pp. 116-120, 2017
    BibTeX
    @inproceedings{HoPeHaBe17,
     author = {Hoffmann, Christian and Petersen, Eike and Handzsuj, Thomas and Bellani, Giacomo and Rostalski, Philipp},
     abstract = {},
     title = {{A Factor Graph-Based Change Point Detection Algorithm With an Application to sEMG-Onset and Activity Detection}},
     pages = {116--120},
     volume = {62},
     series = {Biomedical Engineering / Biomedizinische Technik, Abstract and Poster in Session 6. Biosignal Processing and Monitoring I},
     year = {2017},
     booktitle = {Ann. Conf. German Soc. Biomed. Eng.}
    }
    
    
    
  • Hoffmann, Christian and Isler, Andreas and Rostalski, Philipp: A Factor Graph Approach to Parameter Identification for Affine LPV Systems. in Proc. Amer. Contr. Conf, 2017
    BibTeX
    @inproceedings{HoIsRo17,
     author = {Hoffmann, Christian and Isler, Andreas and Rostalski, Philipp},
     abstract = {},
     title = {{A Factor Graph Approach to Parameter Identification for Affine LPV Systems}},
     year = {2017},
     booktitle = {Proc. Amer. Contr. Conf}
    }
    
    
    

2016

  • Männel, Georg and Rutsatz, Dirk and Krüger, Thomas and Rostalski, Philipp: Modellprädiktive Regelung von Kohlenstoffdioxid im Atemgas. in Proc. Workshop Automed, 2016
    BibTeX
    @inproceedings{MaRuKrRo16,
     author = {M{\"a}nnel, Georg and Rutsatz, Dirk and Kr{\"u}ger, Thomas and Rostalski, Philipp},
     abstract = {},
     title = {{Modellpr{\"a}diktive Regelung von Kohlenstoffdioxid im Atemgas}},
     year = {2016},
     booktitle = {Proc. Workshop Automed}
    }
    
    
    
  • Buchner, Herbert and Petersen, Eike and Eger, Marcus and Rostalski, Philipp: Convolutive blind source separation on surface EMG signals for respiratory diagnostics and medical ventilation control. in Proc. 38th Ann. Int. Conf. Eng. Med. Biol. Soc, no. 2016, pp. 3626-3629, 2016
    BibTeX
    @inproceedings{BuPeEgRo16,
     author = {Buchner, Herbert and Petersen, Eike and Eger, Marcus and Rostalski, Philipp},
     abstract = {The electromyogram (EMG) is an important tool for assessing the activity of a muscle and thus also a valuable measure for the diagnosis and control of respiratory support. In this article we propose convolutive blind source separation (BSS) as an effective tool to pre-process surface electromyogram (sEMG) data of the human respiratory muscles. Specifically, the problem of discriminating between inspiratory, expiratory and cardiac muscle activity is addressed, which currently poses a major obstacle for the clinical use of sEMG for adaptive ventilation control. It is shown that using the investigated broadband algorithm, a clear separation of these components can be achieved. The algorithm is based on a generic framework for BSS that utilizes multiple statistical signal characteristics. Apart from a four-channel FIR structure, there are no further restrictive assumptions on the demixing system.},
     title = {{Convolutive blind source separation on surface EMG signals for respiratory diagnostics and medical ventilation control}},
     pages = {3626--3629},
     volume = {2016},
     year = {2016},
     booktitle = {Proc. 38th Ann. Int. Conf. Eng. Med. Biol. Soc}
    }
    
    
    

2015

  • Ziaian, Dammon and Rostalski, Philipp and Hengstenberg, Andreas and ZImmermann, Stefan: Reducing System Response Time and Noise of Electrochemical Gas Sensors: Discussed for Propofol Monitoring in Breathing Gas. in Proc. 6th Int. Conf. Sensor Device Technol. Applicat, 2015
    BibTeX
    @inproceedings{ZiRoHeZI15,
     author = {Ziaian, Dammon and Rostalski, Philipp and Hengstenberg, Andreas and ZImmermann, Stefan},
     abstract = {},
     title = {{Reducing System Response Time and Noise of Electrochemical Gas Sensors: Discussed for Propofol Monitoring in Breathing Gas}},
     year = {2015},
     booktitle = {Proc. 6th Int. Conf. Sensor Device Technol. Applicat}
    }
    
    
    
  • Becher, Tobias and Cossel, Constantin and Rostalski, Philipp and Adler, Andy and Weiler, Norbert and Frerichs, Inez: Comparison of EIT-derived regional lung opening pressures with global measures of lung mechanics. in Proc. 16th Int. Conf. Biomedical Applicat. Electr. Impedance Tomography, 2015
    BibTeX
    @inproceedings{BeCoRoAd15,
     author = {Becher, Tobias and Cossel, Constantin and Rostalski, Philipp and Adler, Andy and Weiler, Norbert and Frerichs, Inez},
     abstract = {},
     title = {{Comparison of EIT-derived regional lung opening pressures with global measures of lung mechanics}},
     year = {2015},
     booktitle = {Proc. 16th Int. Conf. Biomedical Applicat. Electr. Impedance Tomography}
    }
    
    
    

2010

  • Adjiashvili, David and Baes, Michel and Rostalski, Philipp: Removing redundant quadratic constraints. in Proc. 3rd Int. Congr. Conf. Math. Soft, pp. 270-281, 2010
    BibTeX
    @inproceedings{AdBaRo10,
     author = {Adjiashvili, David and Baes, Michel and Rostalski, Philipp},
     abstract = {},
     title = {{Removing redundant quadratic constraints}},
     pages = {270--281},
     year = {2010},
     booktitle = {Proc. 3rd Int. Congr. Conf. Math. Soft}
    }
    
    
    

2008

  • Setz, C. and Heinrich, A. and Rostalski, Philipp and Papafotiou, G. and Morari, Manfred: Application of Model Predictive Control to a Cascade of River Power Plants. in Proc. 17th IFAC World Congr., pp. 11978-11983, 2008
    BibTeX
    @inproceedings{SeHeRoPa08,
     author = {Setz, C. and Heinrich, A. and Rostalski, Philipp and Papafotiou, G. and Morari, Manfred},
     abstract = {},
     title = {{Application of Model Predictive Control to a Cascade of River Power Plants}},
     pages = {11978--11983},
     year = {2008},
     booktitle = {Proc. 17th IFAC World Congr.}
    }
    
    
    

2007

  • Besselmann, T. and Rostalski, Philipp and Morari, Manfred: Hybrid Parameter-Varying Model Predictive Control for lateral vehicle stabilization. in Proc. Europ. Control Conf, pp. 1068-1075, 2007
    BibTeX
    @inproceedings{BeRoMo07,
     author = {Besselmann, T. and Rostalski, Philipp and Morari, Manfred},
     abstract = {In this paper the concept of Hybrid Parameter-Varying Model Predictive Control (HPV-MPC) is applied for lateral vehicle stabilization. Parameter-varying in the MPC context means that a prediction model with non-constant, parameter-varying system matrices is employed. In the investigated scenario, the displacement of a car on an icy road under a side wind gust shall be mitigated. In order to explore a possible reduction of online computations and the inherent degradation of control performance, the nonlinear model of the lateral dynamics is approximated in various ways. A comparison between controllers using prediction models varying from the full nonlinear model, as an indication for the maximal achievable performance, to a linear model has been performed. Particular emphasis was put on the hybrid parameter-varying prediction model, to investigate their potential in terms of computational effort and control performance.},
     title = {{Hybrid Parameter-Varying Model Predictive Control for lateral vehicle stabilization}},
     pages = {1068--1075},
     year = {2007},
     booktitle = {Proc. Europ. Control Conf}
    }
    
    
    
  • Bates, Daniel J. and Fotiou, Ioannis A. and Rostalski, Philipp: A numerical algebraic geometry approach to nonlinear constrained optimal control. in Proc. 46th IEEE Conf. Decision Control, pp. 6256-6261, 2007
    BibTeX
    @inproceedings{BaFoRo07,
     author = {Bates, Daniel J. and Fotiou, Ioannis A. and Rostalski, Philipp},
     abstract = {A new method for nonlinear constrained optimal control based on numerical algebraic geometry is presented. First, the optimal control problem is formulated as a parametric optimization program. Then, certain structural information related to the optimization problem is computed off-line. Afterwards, given this information, numerical algebraic geometry techniques are used to efficiently obtain the optimal control input (i.e. optimal solution) of the original control problem in real time. By using homotopy continuation over the field of complex numbers, this approach has a probability-one guarantee of finding the {\textless}i{\textgreater}global{\textless}/i{\textgreater} optimal solution to the problem at hand.},
     title = {{A numerical algebraic geometry approach to nonlinear constrained optimal control}},
     pages = {6256--6261},
     year = {2007},
     booktitle = {Proc. 46th IEEE Conf. Decision Control}
    }
    
    
    

2006

  • Lichtenberg, Gerwald and Rostalski, Philipp: Using Path Integral Short Time Propagators for Numerical Analysis of Stochastic Hybrid Systems. in Proc. 2nd IFAC Conf. on Analysis and Des. Hybrid Syst., pp. 179-184, 2006
    BibTeX
    @inproceedings{LiRo06,
     author = {Lichtenberg, Gerwald and Rostalski, Philipp},
     abstract = {Algorithms to approximate the evolution of probability density functions for stochastic hybrid systems rely on the knowledge of appropriate short time propagators. It is shown that a path integral propagator known for continuous stochastic systems can be adopted to the hybrid case. With this propagator, the HybPathTree algorithm performs well concerning precision and computational effort, e.g. in reachability analysis.},
     title = {{Using Path Integral Short Time Propagators for Numerical Analysis of Stochastic Hybrid Systems}},
     pages = {179--184},
     year = {2006},
     booktitle = {Proc. 2nd IFAC Conf. on Analysis and Des. Hybrid Syst.}
    }
    
    
    
  • Fotiou, Ioannis A. and Rostalski, Philipp and Sturmfels, Bernd and Morari, Manfred: An algebraic geometry approach to nonlinear parametric optimization in control. in Proc. Amer. Control Conf, pp. 6 pp, 2006
    BibTeX
    @inproceedings{FoRoStMo06,
     author = {Fotiou, Ioannis A. and Rostalski, Philipp and Sturmfels, Bernd and Morari, Manfred},
     abstract = {We present a method for nonlinear parametric optimization based on algebraic geometry. The problem to be studied, which arises in optimal control, is to minimize a polynomial function with parameters subject to semialgebraic constraints. The method uses Grobner bases computation in conjunction with the eigenvalue method for solving systems of polynomial equations. In this way, certain companion matrices are constructed off-line. Then, given the parameter value, an on-line algorithm is used to efficiently obtain the optimizer of the original optimization problem in real time},
     title = {{An algebraic geometry approach to nonlinear parametric optimization in control}},
     pages = {6 pp},
     year = {2006},
     booktitle = {Proc. Amer. Control Conf}
    }
    
    
    

Patents and Patent Applications

2017

  • Eger, Marcus and Rostalski, Philipp and Buchner, Herbert: Vorrichtung und Verfahren zum Bereitstellen von Datensignalen indizierend Muskelaktivitäten, welche für inspiratorische sowie exspiratorische Atemanstrengungen eines Patienten relevant sind. 2017
    BibTeX
    @patent{EgRoBu17,
     author = {Eger, Marcus and Rostalski, Philipp and Buchner, Herbert},
     abstract = {},
     year = {2017},
     title = {{Vorrichtung und Verfahren zum Bereitstellen von Datensignalen indizierend Muskelaktivit{\"a}ten, welche f{\"u}r inspiratorische sowie exspiratorische Atemanstrengungen eines Patienten relevant sind}},
     number = {DE102015015296 (A1)},
     assignee = {{Dr{\"a}gerwerk AG {\&} Co. KGaA}},
     nationality = {Germany}
    }
    
    
    
  • Handzsuj, Thomas and Krüger, Thomas and Rostalski, Philipp and Eger, Marcus: Beatmungssystem mit einer Anzeigeeinrichtung. 2017
    BibTeX
    @patent{HaKrRoEg17,
     author = {Handzsuj, Thomas and Kr{\"u}ger, Thomas and Rostalski, Philipp and Eger, Marcus},
     abstract = {},
     year = {2017},
     title = {{Beatmungssystem mit einer Anzeigeeinrichtung}},
     number = {DE102016001138 (A1)},
     assignee = {{Dr{\"a}gerwerk AG {\&} Co. KGaA}},
     nationality = {Germany}
    }
    
    
    
  • Handzsuj, Thomas and Krüger, Thomas and Rostalski, Philipp and Eger, Marcus: Beatmungssystem mit einer Anzeigeeinrichtung. 2017
    BibTeX
    @patent{HaKrRoEg17b,
     author = {Handzsuj, Thomas and Kr{\"u}ger, Thomas and Rostalski, Philipp and Eger, Marcus},
     abstract = {},
     year = {2017},
     title = {{Beatmungssystem mit einer Anzeigeeinrichtung}},
     number = {DE102016001139 (A1)},
     assignee = {{Dr{\"a}gerwerk AG {\&} Co. KGaA}},
     nationality = {Germany}
    }
    
    
    

2016

  • Rostalski, Philipp and Handzsuj, Thomas and Krüger, Thomas: Verfahren zur Einstellung der Betriebsparameter eines Beatmungssystems. 2016
    BibTeX
    @patent{RoHaKr15,
     author = {Rostalski, Philipp and Handzsuj, Thomas and Kr{\"u}ger, Thomas},
     abstract = {},
     year = {2016},
     title = {{Verfahren zur Einstellung der Betriebsparameter eines Beatmungssystems}},
     number = {DE102015004164 (A1)},
     assignee = {{Dr{\"a}gerwerk AG {\&} Co. KGaA}},
     nationality = {Germany}
    }
    
    
    
  • Böckmann, Jan and Tröllsch, Arne and Rostalski, Philipp: Messverfahren, Messvorrichtung und Messsystem. 2016
    BibTeX
    @patent{BoTrRo16,
     author = {B{\"o}ckmann, Jan and Tr{\"o}llsch, Arne and Rostalski, Philipp},
     abstract = {Die Erfindung bezieht sich auf ein Messsystem (10), eine Messvorrichtung (12), einen Reaktionstr{\"a}ger (14) und ein Messverfahren zur Messung einer Konzentration von gas- und/oder aerosolf{\"o}rmigen Komponenten eines Gasgemisches. Der Reaktionstr{\"a}ger weist zwei Str{\"o}mungskan{\"a}le (42) und eine Codierung auf, welche ausgebildet ist, um von einem Positionssensor (36) erfasst zu werden und eine unabh{\"a}ngige Positionierung des Reaktionstr{\"a}gers in jeder der den Str{\"o}mungskan{\"a}len zugeordneten Relativpositionen zu erm{\"o}glichen. Zumindest ein Str{\"o}mungskanal bildet eine Reaktionskammer (46) mit einem Reaktionsstoff (48) und der Reaktionsstoff geht mit zumindest einer zu messenden Komponente des Gasgemisches eine optisch detektierbare Reaktion ein.; Die Messvorrichtung umfasst einen Positionssensor zum Erfassen einer Relativposition des Reaktionstr{\"a}gers und eine Reaktionstr{\"a}gerf{\"o}rdereinrichtung (28) zum Bewegen des Reaktionstr{\"a}gers relativ zu Gasanschl{\"u}ssen (22, 24) eines Gaszu-(16) und -abflusskanals (16, 18), welche ausgebildet ist, um in einem Messvorgang den Reaktionstr{\"a}ger in einer ersten Relativposition zu positionieren, zum Herstellen einer Verbindung zwischen den Gasanschl{\"u}ssen {\"u}ber einen ersten Str{\"o}mungskanal zum Durchsp{\"u}len des Gaszuflusskanals, und in einer zweiten Relativposition zu positionieren, zum Herstellen einer Verbindung zwischen den Gasanschl{\"u}ssen {\"u}ber einen zweiten, eine Reaktionskammer bildenden Str{\"o}mungskanal, zur Messung der Gasgemischkomponente.},
     year = {2016},
     title = {{Messverfahren, Messvorrichtung und Messsystem}},
     number = {DE102014013143 (B4)}
    }
    
    
    
  • Handzsuj, Thomas and Krüger, Thomas and Eger, Marcus and Rostalski, Philipp: Beatmungssystem mit einer Anzeigeeinrichtung. 2016
    BibTeX
    @patent{HaKrEgRo16,
     author = {Handzsuj, Thomas and Kr{\"u}ger, Thomas and Eger, Marcus and Rostalski, Philipp},
     abstract = {},
     year = {2016},
     title = {{Beatmungssystem mit einer Anzeigeeinrichtung}},
     number = {20131501DE}
    }
    
    
    

2015

  • Hansmann, Hans-Ullrich and Rostalski, Philipp and Böckmann, Jan: Magazinvorrichtung, Messsystem und Verfahren zur Messung einer Konzentration von gas- und/oder aerosolförmigen Komponenten eines Gasgemisches. 2015
    BibTeX
    @patent{HaRoBo15,
     author = {Hansmann, Hans-Ullrich and Rostalski, Philipp and B{\"o}ckmann, Jan},
     abstract = {Die Erfindung betrifft eine Magazinvorrichtung (14) f{\"u}r ein Messger{\"a}t (12) zur Messung einer Konzentration von gas- und/oder aerosolf{\"o}rmigen Komponenten eines Gasgemisches und ein Verfahren zur Messung zur Messung der Konzentration der Komponenten des Gasgemisches. Die Magazinvorrichtung (14) umfasst eine Haltevorrichtung (16) f{\"u}r eine Mehrzahl von Reaktionstr{\"a}gern (18), welche jeweils zumindest eine Reaktionskammer mit einem Reaktionsstoff aufweisen, wobei der Reaktionsstoff ausgebildet ist, um mit einer jeweiligen zu messenden Komponente des Gasgemisches oder einem Reaktionsprodukt der zu messenden Komponente eine optisch detektierbare Reaktion einzugehen; eine Zuf{\"u}hrvorrichtung (20), welche ausgebildet ist, um einen Reaktionstr{\"a}ger (18) der Mehrzahl von Reaktionstr{\"a}gern (18) aus der Haltevorrichtung (16) zu entnehmen und dem Messger{\"a}t (12) zur Durchf{\"u}hrung einer Messung der jeweiligen zu messenden Komponente des Gasgemisches zuzuf{\"u}hren; und eine Steuereinheit (22) zum Steuern der Haltevorrichtung (16) und/oder der Zuf{\"u}hrvorrichtung (20) aufweist.},
     year = {2015},
     title = {{Magazinvorrichtung, Messsystem und Verfahren zur Messung einer Konzentration von gas- und/oder aerosolf{\"o}rmigen Komponenten eines Gasgemisches}},
     number = {DE102014015945 (B3)}
    }
    
    
    

2014

  • Rostalski, Philipp and Sattler, Frank: Verfahren und Vorrichtung zur Bestimmung einer Kerntemperatur eines Körpers. 2014
    BibTeX
    @patent{RoSa14,
     author = {Rostalski, Philipp and Sattler, Frank},
     abstract = {Beschrieben und beansprucht wird ein Verfahren und eine Vorrichtung zur Bestimmung einer Kerntemperatur eines K{\"o}rpers aus einem W{\"a}rmefluss von dem K{\"o}rper {\"u}ber ein erstes Sensorelement und ein zweites Sensorelement zu einem neutralen Medium mit einem den W{\"a}rmefluss mit einer Mehrzahl von Parametern beschreibenden dynamischen Modell, das zumindest die Kerntemperatur des K{\"o}rpers, eine mit dem ersten Sensorelement gemessene Temperatur und eine mit dem zweiten Sensorelement gemessene Temperatur umfasst, wobei das erste Sensorelement an einer Oberfl{\"a}che des K{\"o}rpers angeordnet ist.; Einer der Parameter und die Kerntemperatur werden so gesch{\"a}tzt, dass eine Differenz zwischen aufgezeichneten Temperaturen der Sensorelemente und den Temperaturen, die sich aus dem dynamischen Modell f{\"u}r eine zeitlich vor einem bestimmten Zeitpunkt liegende Mehrzahl von Zeitpunkten an dem ersten und dem zweiten Sensorelement ergeben, minimiert wird. Eine gesch{\"a}tzte Kerntemperatur, bei der die Differenz minimiert worden ist, ist die zu bestimmende Kerntemperatur des K{\"o}rpers.},
     year = {2014},
     title = {{Verfahren und Vorrichtung zur Bestimmung einer Kerntemperatur eines K{\"o}rpers}},
     number = {DE102013007631 (A1)}
    }
    
    
    
  • Hansmann, Hans-Ullrich and Rostalski, Philipp: Reaction Support, Measuring Method and Measuring Method for Determining Gas and Particle Concentrations, and Optical Flow Sensor. 2014
    BibTeX
    @patent{HaRo14,
     author = {Hansmann, Hans-Ullrich and Rostalski, Philipp},
     abstract = {The invention relates to a reaction support (14) for a measuring system (10) for measuring a concentration of components of a gas mixture which are in the form of a gas and/or an aerosol and to such a measuring system (10) and to a corresponding measuring method. The reaction support (14) comprises at least one flow channel (42), wherein the flow channel (42) forms a reaction chamber (46) with a reactant (48) which is designed to enter into an optically detectable reaction with at least one component of the gas mixture to be measured or with a reaction product of the component to be measured. The flow channel (42) is at least partially filled with particles (100, 102, 104, 110) which have a starting position before the gas mixture flows through the flow channel (42) and to which a gas flow is applied through the flow channel (42) in a flow position, wherein the particles (100, 102, 104, 110) are designed in such a manner that the particles (100, 102, 104, 110) in the starting position and the particles (100, 102, 104, 110) in the flow position can be optically distinguished. The invention also relates to an optical flow sensor (109) for determining a flow of a fluid.},
     year = {2014},
     title = {{Reaction Support, Measuring Method and Measuring Method for Determining Gas and Particle Concentrations, and Optical Flow Sensor}},
     number = {DE102013009642 (B2) Abstract of corresponding document: WO2014194983 (B2)}
    }
    
    
    
  • Hansmann, Hans-Ullrich and Rostalski, Philipp: Messvorrichtung, Reaktionsträger und Messverfahren. 2014
    BibTeX
    @patent{HaRo14b,
     author = {Hansmann, Hans-Ullrich and Rostalski, Philipp},
     abstract = {Die Erfindung bezieht sich auf einen Reaktionstr{\"a}ger (14), eine Messvorrichtung (12) und ein Messverfahren zur Messung einer Konzentration von gas- und/oder aerosolf{\"o}rmigen Komponenten eines Gasgemisches. Der Reaktionstr{\"a}ger (14) weist einen Str{\"o}mungskanal (42) auf, der eine Reaktionskammer (46) bildet, in welcher ein Reaktionsstoff (48) vorgesehen ist, welcher ausgebildet ist, um mit zumindest einer zu messenden Komponente des Gasgemisches oder einem Reaktionsprodukt der zu messenden Komponente eine optisch detektierbare Reaktion einzugehen. Ferner weist der Reaktionstr{\"a}ger (14) zumindest ein Feuchtigkeitsmesselement (84) auf, welches eine Feuchtigkeit des durch den Str{\"o}mungskanal (42) str{\"o}menden Gasgemisches erkennt.; Die Messvorrichtung (12) weist eine Feuchtigkeitserfassungseinheit (85), welche das Feuchtigkeitsmesselement (84) des Reaktionstr{\"a}gers (14) auslesen kann, und eine Feuchtigkeitsbestimmungseinheit (94) auf, welche in Abh{\"a}ngigkeit von dem ausgelesenem Messergebnis des Feuchtigkeitsmesselements (84) eine Feuchtigkeit des Gasgemisches bestimmt. Das Messverfahren umfasst die Bestimmung einer Feuchtigkeit des gef{\"o}rderten Gasgemisches im Str{\"o}mungskanal (42) und die Bestimmung einer Konzentration der zumindest einen Komponente in Abh{\"a}ngigkeit von der optisch detektierbaren Reaktion und der bestimmten Feuchtigkeit des Gasgemischs.},
     year = {2014},
     title = {{Messvorrichtung, Reaktionstr{\"a}ger und Messverfahren}},
     number = {DE102013006548 (A1)}
    }
    
    
    
  • Hansmann, Hans-Ullrich and Rostalski, Philipp and Mohrmann, Andreas: Messvorrichtung, Reaktionsträger und Messverfahren. 2014
    BibTeX
    @patent{HaRoMo14,
     author = {Hansmann, Hans-Ullrich and Rostalski, Philipp and Mohrmann, Andreas},
     abstract = {Die Erfindung betrifft eine Messvorrichtung (10) und ein entsprechendes Messverfahren zur Messung einer Konzentration von gas- und/oder aerosolf{\"o}rmigen Komponenten eines Gasgemisches f{\"u}r einen Reaktionstr{\"a}ger (14) mit einem Str{\"o}mungskanal (42), der eine Reaktionskammer (46) mit einem Reaktionsstoff (48) bildet, welcher ausgebildet ist, um mit zumindest einer zu messenden Komponente des Gasgemisches oder einem Reaktionsprodukt der zu messenden Komponente eine optisch detektierbare Reaktion einzugehen.; Messvorrichtung (12) umfasst eine Detektionsbaugruppe (3) und eine Gasf{\"o}rderbaugruppe (2), wobei die Detektionsbaugruppe (3) eine Beleuchtungseinrichtung (37) zur Beleuchtung der Reaktionskammer (46) des Reaktionstr{\"a}gers (14), einen optischen Sensor (38) zur Erfassung der optisch detektierbaren Reaktion, und eine Auswertungseinheit (4) zu Auswertung der vom optischen Sensor (38) erfassten Daten der optisch detektierbaren Reaktion und Bestimmung einer Konzentration der Komponente des Gasgemisches aufweist, und die Gasf{\"o}rderbaugruppe (2) eine Gasf{\"o}rdereinrichtung (28) zur F{\"o}rderung des Gasgemisches durch den Gasabflusskanal (18) und eine Steuerungs-/Reglungseinheit (31) aufweist, welche ausgebildet ist, um einen Durchfluss des Gasgemischs durch den Str{\"o}mungskanal (42) in Abh{\"a}ngigkeit zumindest eines Reaktionsgeschwindigkeitsparameters zu steuern oder zu regeln.},
     year = {2014},
     title = {{Messvorrichtung, Reaktionstr{\"a}ger und Messverfahren}},
     number = {DE102013006543 (B4)}
    }
    
    
    
  • Hansmann, Hans-Ullrich and Rostalski, Philipp and Mohrmann, Andreas and Hiltawsky, Karsten and Tröllsch, Arne: Messvorrichtung, Reaktionsträger und Messverfahren. 2014
    BibTeX
    @patent{HaRoMoHi14,
     author = {Hansmann, Hans-Ullrich and Rostalski, Philipp and Mohrmann, Andreas and Hiltawsky, Karsten and Tr{\"o}llsch, Arne},
     abstract = {Die Erfindung bezieht sich auf eine Messvorrichtung (10) sowie ein entsprechendes Messverfahren zur Messung einer Konzentration von gas- und/oder aerosolf{\"o}rmigen Komponenten eines Gasgemisches f{\"u}r einen Reaktionstr{\"a}ger (14), mit einem Str{\"o}mungskanal (42), der eine Reaktionskammer (46) mit einem Reaktionsstoff (48) bildet, welcher ausgebildet ist, um mit zumindest einer zu messenden Komponente des Gasgemisches oder einem Reaktionsprodukt der zu messenden Komponente eine optisch detektierbare Reaktion einzugehen.; Die Messvorrichtung (12) umfasst eine Gasf{\"o}rderbaugruppe (2) mit einer Gasf{\"o}rdereinrichtung (28) zur F{\"o}rderung des Gasgemisches durch den Gasabflusskanal (18), und eine Detektionsbaugruppe (3) mit einer Beleuchtungseinrichtung (37) zur Beleuchtung der Reaktionskammer (46) des Reaktionstr{\"a}gers (14), einem optischen Sensor (38) zur Erfassung der optisch detektierbaren Reaktion, und eine Auswertungseinheit (4) zu Auswertung der vom optischen Sensor erfassten Daten der optisch detektierbaren Reaktion und Bestimmung einer Konzentration der Komponente des Gasgemisches. Die Detektionsbaugruppe (3) ist ausgebildet, um eine Geschwindigkeit einer sich in Str{\"o}mungsrichtung in der Reaktionskammer (46) ausbreitenden Reaktionsfront (6) zu erfassen und aus der Geschwindigkeit der Reaktionsfront (6) eine vorl{\"a}ufige Konzentration zu bestimmen.},
     year = {2014},
     title = {{Messvorrichtung, Reaktionstr{\"a}ger und Messverfahren}},
     number = {DE102013006545 (A1)}
    }
    
    
    
  • Hansmann, Hans-Ullrich and Rostalski, Philipp and Mohrmann, Andreas and Rahn-Marx, Dirk and Seeck, Andreas and Polzius, Rainer: Messvorrichtung, Reaktionsträger und Messverfahren. 2014
    BibTeX
    @patent{HaRoMoRa14,
     author = {Hansmann, Hans-Ullrich and Rostalski, Philipp and Mohrmann, Andreas and Rahn-Marx, Dirk and Seeck, Andreas and Polzius, Rainer},
     abstract = {Die Erfindung bezieht sich auf einen Reaktionstr{\"a}ger (14), eine Messvorrichtung (12) und ein Messverfahren zur Messung einer Konzentration von gas- und/oder aerosolf{\"o}rmigen Komponenten eines Gasgemisches mittels eines Reaktionsstoffs (48), der mit zumindest einer zu messenden Komponente des Gasgemisches oder einem Reaktionsprodukt der zu messenden Komponente eine optisch detektierbare Reaktion eingeht. Der Reaktionstr{\"a}ger (14) weist zumindest einen in zumindest zwei Teilstrecken (43) aufgeteilten Str{\"o}mungskanal (42) auf, der sich zwischen zwei Anschlusselementen (44) erstreckt, wobei in den zumindest zwei Teilstrecken (43) jeweils zumindest ein Gasbehandlungselement (47) vorgesehen ist, welches die chemischen oder physikalischen Eigenschaften des durchstr{\"o}mendes Gasgemisches ver{\"a}ndert oder in Abh{\"a}ngigkeit der chemischen oder physikalischen Eigenschaften reagiert.; Zumindest zwei Teilstrecken (43) des zumindest einen Str{\"o}mungskanals (42) sind durch ein Trennelement (49) gasdicht von einander getrennt und zumindest ein Kopplungselement (45) ist vorgesehen, welches ausgebildet ist, um bei einer Aktivierung des Kopplungselements (45) das Trennelement (49) zu {\"o}ffnen und eine Verbindung zwischen den Teilstrecken (43) herzustellen. Die Messvorrichtung (12) umfasst zumindest ein Aktivierungselement (25), welches ausgebildet ist, um das zumindest eine Kopplungselement (45) des Reaktionstr{\"a}gers (14) zu aktivieren.},
     year = {2014},
     title = {{Messvorrichtung, Reaktionstr{\"a}ger und Messverfahren}},
     number = {DE102013006544 (B4)}
    }