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ABSTRACT

In addition to the recent development of deep learning-based, automatic detection systems for diabetic retinopa-
thy (DR), efforts are being made to integrate those systems into mobile detection devices running on the edge
requiring lightweight algorithms. Moreover, to enable clinical deployment it is important to enhance the trans-
parency of the deep learning systems usually being black-box models and hence giving no insights into its
reasoning. By providing precise segmentation masks for lesions being related to the severity of DR, a good
intuition about the decision making of the diagnosing system can be given. Hence, to enable transparent mobile
DR detection devices simultaneously segmenting disease-related lesions and running on the edge, lightweight
models capable to produce fine-grained segmentation masks are required contradicting the generally high com-
plexity of fully convolutional architectures used for image segmentation. In this paper, we evaluate both the
runtime and segmentation performance of several lightweight fully convolutional networks for DR related lesion
segmentation and assess its potential to extend mobile DR-grading systems for improved transparency. To this
end, the U2-Net is downscaled to reduce the computational load by reducing feature size and applying depthwise
separable convolutions and evaluated using deep model ensembling as well as single- and multi-task inference
to improve performance and further reduce memory cost. Experimental results using the U2-Net-S† ensemble
show good segmentation performance while maintaining a small memory footprint as well as reasonable inference
speed and thus indicate a promising first step towards a holistic mobile diagnostic system providing both precise
lesion segmentation and DR-grading.

Keywords: mobile segmentation, diabetic retinopathy, deep learning, multi-lesion segmentation, U-Net, fundus
image

1. INTRODUCTION

Diabetic retinopathy (DR) is a pathologic condition related to diabetic changes of the vascular tissue causing
retinal lesions such as microaneurysms, haemorrhages, hard- and soft exudates,1 as shown in fig. 1. Later on
vascular closure, hypoxia, vascular proliferation and retinal detachment can occur finally resulting in heavy
impairment or total loss of vision when being untreated.1 These changes become visible in the eye’s fundus
which enables trained specialists, i.e. ophthalmologists, to screen diabetic patients for early signs of DR and,
when present, prescribe therapeutic measures to prevent the progression of DR to vision-threatening stages.1

Leveraging automatic diagnostic algorithms to detect the presence and severity of DR, could help general
practitioners in screening diabetic patients in rural areas where access to specialized medical examination is
limited.2 To solve this task, deep learning assisted DR detection systems are of high research interest due to the
excellent diagnostic performance that can be achieved using neural networks. To additionally evade the high cost
of bulky specialized hardware that is able to run state-of-the-art but large deep learning models, developing light-
weight, mobile, edge device applicable systems with good performance gains increasing attention as deployment
of those is less expensive and can improve usability and availability in areas with limited access to medical care.

Nevertheless, deep learning systems are usually black-box models that lack transparency limiting the trust
in DL algorithms and the expressive power of predicted diagnoses. Thus, providing insights into the decision
making and visualizing intermediate results can be helpful for clinicians to verify the model’s prediction. In
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Figure 1. Sample images of the IDRiD dataset in the first row with corresponding segmented lesions in the second row
(microaneurysms , haemorrhages , hard exudates , soft exudates ).

particular, highlighting retinal lesions associated with the vision-threatening disease at hand and present at the
patient’s retina can improve the physician’s understanding of the deep learning system’s prediction of whether
the disease is present and how reliable this prediction is. To this end, the DL grading system can be accompanied
by or even build based on a segmentation model predicting fine-grained masks of DR related lesions. However,
these models are typically more computationally demanding compared to regular classification models due to
the large intermediate activation maps computed e.g. in the decoder part of the U-Net.

Therefore, we apply various complex instances of the U2-Net,3 a recent extension to the famous U-Net,4 for the
specific task of Diabetic Retinopathy (DR) related lesion segmentation and analyse its suitability for edge-device
implementation in this work. According to the authors, the U2-Net shows state-of-the-art performance for salient
object detection when trained from scratch, while being designed to maintain low memory cost and keep input
image resolution high. Hence, the U2-Net promises to be a good baseline for building a lightweight segmentation
model being applicable to edge devices and generalizing well on medical image data that, in particular for the task
of lesion segmentation, is commonly rare. By applying mobile application-suitable convolutions, i.e. depthwise
separable convolutions,5 varying the network capacity as well as evaluating the impact of multi-task and ensemble
learning, we aim to evaluate (a) the suitability of the U2-Net to the task of biomedical image segmentation, (b)
the segmentation performance when training the U2-Net on small data from scratch and (c) the segmentation
accuracy and computational load of the differently complex instances of the model and hence the suitability of
the architecture for edge device implementation. To this end, we compare the performance of the basic U-Net to
the U2-Net and state-of-the-art results in the literature on the one hand. On the other hand, we benchmark the
different model instances to find a good trade-off between computational cost and segmentation performance of
the retinal lesions.

2. RELATED WORK

With the rising performance of deep learning algorithms over the last two decades, developing artificial intelligence-
based automatic medical diagnostic algorithms gained tremendous research interest. This applies to the task of
DR detection6–11 as well, leading to the first algorithms being approved for use in clinical care.12,13 In addition
to that, also mobile DR detection systems14 using lightweight neural networks15 are brought into research focus.



Despite their excellent performance, deep learning algorithms are not guaranteed to generalize to real-world
application data and are black-boxes that in general do not allow to understand the model’s reasoning. This
however is inconvenient for highly safety-critical applications such as medical diagnosis where it is important to
understand why a prediction was made, to verify the decision and to prevent severe misdiagnoses. Therefore,
recent methods are built to highlight areas in the retinal fundus that contributed to the model’s prediction the
most7,8, 14,16 or to grade the disease based on detected DR related lesions.9,10,12

Additionally, computing precise segmentation masks of lesion-specific pathologic areas in the retina could
give further insights and hence improve classification. This, however, is a highly demanding task due to the lack
of a sufficient amount of annotated data as well as the lesions being commonly very small and also sometimes
poorly distinguishable from noise and other retinal structures and lesions. To circumvent the problem of data
availability for DR lesion segmentation tasks, semi- or weakly-supervised as well as adversarial training strategies
can be used to leverage information of image-level graded datasets,17–19 such as Kaggle DR20 or Messidor.21

Accounting for the small lesion size of e.g. microaneurysm and hard exudate, high-resolution input images and
multi-scale approaches can boost segmentation performance fusing important information from local and global
image features into the model’s prediction.22–24 To additionally account for edge device suitable segmentation,
Guo et al.25 propose the LWENet architecture with about 1.9M parameters for lightweight hard exudate
segmentation using only a single pooling operation, running at approximately 11.1 fps for an input image size of
(1440× 960) pixels.

3. METHODS

To combine both, high segmentation performance and low computational cost while training on a small medical
image data set from scratch, this work implements the U2-Net with different model capacities and analyses its
suitability for DR lesion segmentation with respect to edge device implementation.

As a reference model, the U-Net is used as baseline architecture being an encoder-decoder shaped fully
convolutional network explicitly designed for biomedical image segmentation on a small amount of data.4 The
encoder is trained to extract meaningful features using sequential convolution, batch-norm, ReLU operations
while scaling down the input image resolution using max-pooling operations and hence increasing the receptive
field of the model, similar to most classification architectures. However, mirroring the encoder structure, the
decoder reconstructs fine-grained segmentation masks from the learned latent encoding by using skip connections
to exploit high-resolution features from the intermediate layers in the encoder. This enables the U-Net to use
both global and local features to produce high resolution and precise segmentation masks in a single forward
pass of the network requiring only few images, which is beneficial for the task of biomedical image segmentation
where data is usually scarce.4 For this work, we use the original U-Net architecture comprising five depth layers
but with additional batch-norm layers and transposed convolutions in the decoder.

Adopting the encoder-decoder structure with additional skip connections, Qin et al.3 propose the U2-Net that
makes use of a nested U-Net structure using so-called, residual U-blocks (RSU) which exploit residual connections
as well as pooling operations and dilated convolutions to increase the model depth and enhance the receptive
field of each depth-level in the wrapping U-Net. With this, the RSU-block extracts rich multi-scale features
already at early layers on both local and global level while retaining high resolution of the input activation
maps leading to an increased model capacity and performance of the U2-Net compared to the plain U-Net.3

Despite increasing the number of model parameters, Qin et al. show that using the RSU-block introduces only a
small increase in computational cost compared to the plain U-Net and has significantly lower cost in contrast to
other frequently used U-Net extensions, e.g. residual or dense blocks while performing similar or better to other
state-of-the-art salient object detection models. To further improve model performance, Qin et al. additionally
apply deep supervision to side outputs of each depth-level within the decoder. As a result, the authors claim a
good inference performance with using the U2-Net preserving fine-grained structures, enabling training on small
data from scratch and alleviating the design of lightweight, mobile architectures due to being independent of
large pretrained backbones and comparably small computational load.

In this work, we first implement the two models introduced by Qin et al. without any changes, here referred to
as U2-Net-O and U2-Net-M, and analyse their performance on biomedical image segmentation data in comparison



Table 1. Setup of differently scaled U2-Nets. The first and second column displays the number of input and middle
channels of each RSU-block (ei, i = 1, . . . , 6) in the encoder, respectively. The decoder is adopted such to the number
of features in the encoder is mirrored. The third row displays the number of features of the final convolutional layer
computing the high-resolution output segmentation mask.

Model Input Middle Output
e1 e2 e3 e4 e5 e6 e1 e2 e3 e4 e5 e6

U2-Net-O 3 64 128 256 512 512 16 32 64 128 256 256 64

U2-Net-M 3 64 64 64 64 64 16 16 16 16 16 16 64

U2-Net-S 3 32 32 32 32 32 8 8 8 8 8 8 32

U2-Net-XS 3 16 16 16 16 16 4 4 4 4 4 4 16

to the baseline U-Net. Both networks apply five consecutive RSU-blocks with subsequent max-pooling in the
encoder as well as an additional RSU-block at the model’s bottleneck and only differ in the number of features
and hence model size and capacity. We then additionally scale down the U2-Net by reducing the convolution
layer’s feature size of the U2-Net-M by 50% and 75% resulting in two smaller model instances, i.e. U2-Net-S
and U2-Net-XS. A detailed description of the model parameterization is given in table 1.

Moreover, we deploy four additional models using depth-wise separable convolutions. This specific con-
volutional layer factorizes a regular convolution into two separate operations, i.e. a depth- and a point-wise
convolution. While the former processes the input spatially, i.e. applies a single filter for each or a group of
channels, the letter uses a 1 × 1 convolution to expand or reduce the channel depth of the depth-wise convo-
lution. This lowers the number of parameters, memory footprint and required Multiply-Accumulation (MAC)
operations significantly while retaining a large quantity of the convolutional capacity compared to regular con-
volutional layers. Hence, depth-wise separable convolutions are frequently used, e.g. in the MobileNet5 and its
subsequent versions, to reduce the computational cost of a model architecture to enable edge device application
while keeping high performance. To evaluate if this sparse convolution can be beneficial for further reduction
of the U2-Net’s computational load while maintaining sufficient performance, we interchange every but each
RSU-blocks first and the final U2-Nets output convolution within the differently sized models with depthwise
separable convolutions. We refer to these models as U2-Net-O∗, U2-Net-M∗, U2-Net-S∗ and U2-Net-XS∗.

In addition, we evaluate the effect of model ensembling for every but the largest U2-Net-O, denoted as
U2-Net-M†, U2-Net-S†, and U2-Net-XS†, as deep ensembling is known to significantly improve model perfor-
mance. Moreover, performing dual- (DT) and multi-task (MT) lesion segmentation can help to further decrease
memory and computational cost. Therefore, we accordingly set up multi-lesion segmentation models in addition
to the single-task (ST) instances. For dual-task training, microaneurysms and haemorrhages, as well as hard- and
soft exudates are segmented simultaneously, while during multi-task training a single model learns to segment
all four lesions at once. With this, inference time and the overall number of model parameters as well as the
computational cost for model training can be significantly reduced by half and a quarter, respectively. However,
hard parameter sharing between competing tasks is more difficult to train and can impair model performance.

In table 2, the different single-task model architectures are compared to each other with respect to their
computational demands at inference time. To assess the suitability of the networks for mobile implementation,
we report the frames per second (fps) the model takes during inference, as well as the computational complexity
given as multiply-accumulates (MACs), the number of parameters, the network storage size for a single-precision
model and the RAM allocated on the GPU by PyTorch during inference. Please note that dual- and multi-task
models are omitted as they do only differ slightly from the single-task model computational cost. However, when
using single-task models to segment all four lesions, the reported computational cost is quadrupling and doubling
for dual-task models.

4. IMAGE DATA AND PREPROCESSING

For training, the publicly available Indian Diabetic Retinopathy image Dataset26 (IDRiD) is used. It provides
81 retinal fundus images with fine-grained segmentation masks of microaneurysms (MA), haemorrhages (HE)



Table 2. Runtime performance of the implemented single-task networks at inference for a single lesion running on a
GeForce RTX 2080Ti (11GB) with an Intel Xenon Gold 6212U (192GB) using PyTorch (v1.8.0) and a randomly sampled
input image of size (1× 3× 512× 512) for 500 iterations. The MACs of the models are approximated using the toolbox
thop†.

Model
Frame rate [fps] MACs

[G]
Parameters

[M]
Model size (fp32)

[MB]
GPU-RAM

[MB]

U-Net 30.46 218.85 31.04 124.17 586.28

U2-Net-O 27.71 141.98 43.87 175.48 798.34

U2-Net-O∗ 31.90 81.20 17.66 70.65 692.76

U2-Net-M 43.75 51.32 1.13 4.52 579.36

U2-Net-M∗ 51.22 33.48 0.66 2.63 576.50

U2-Net-S 64.85 13.19 0.29 1.14 289.80

U2-Net-S∗ 54.24 8.93 0.18 0.70 290.48

U2-Net-XS 69.26 3.48 0.07 0.29 147.45

U2-Net-XS∗ 55.10 2.52 0.05 0.20 147.43

U2-Net-M† 14.40 152.70 3.39 13.57 610.15

U2-Net-S† 21.55 38.91 0.86 3.43 314.86

U2-Net-XS† 22.94 10.10 0.22 0.88 170.84

and hard- (HX) as well as soft exudates (SX) that are important biomarkers for detection of DR in particular
in early stages, as displayed in fig. 1. We adhere to the predefined train-test split of the dataset while 20% of
the training data are randomly selected at the start of each training and used for performance validation.

The image preprocessing applied in this work comprises cropping the images to the visible retinal disc with
a semi-automatic algorithm using binary thresholding, resizing the images to (512 × 512) pixels and applying
contrast limited histogram equalization (CLAHE). The CLAHE operation is applied to the value channel of the
input image after converting it to the HSV colour space to equally enhance the contrast of all image colour
channels. After converting the images back into RGB colour space, the images are normalized with the mean
and standard deviation of the test set.

At training time, data augmentation, i.e. random affine transformations as well as horizontal and vertical
flipping, is applied to the input images to artificially scale up the training data set and reduce model overfitting.

5. EXPERIMENTAL SETUP

Each of the above-described models is trained ten times on the IDRID dataset without pretraining. Training
was conducted on an Nvidia Tesla-V100 (32GB) along with an Intel(R) Xeon(R) Platinum 8168 CPU over 400
epochs that takes about 1.5 h per model in single-task mode for the large U2-Net-O and about 1 h for the small
U2-Net-XS. We use Adam as optimizer with a learning rate of 5e− 4, L2-norm weight decay set to 1e− 4 and
a plateau scheduler with a factor of 0.75 and patience of 15 epochs. As loss, a weighted fusion of Dice-loss (LD)
and focal binary cross-entropy27 (LfBCE) is applied to the model according to

L(y, ŷ) = 1

C

C∑
k

(
α · LfBCE (yk, ŷk, γ) + (1− α) · LD (yk, ŷk)

)
· wk

with wk being a weighting factor only active during dual- and multi-task training boosting the learning of under-
represented classes with low volume in the current batch. Accordingly, wk is set to zero in case a class is absent
throughout the batch to prevent the model from degrading to constantly predict empty masks. This mainly
affects soft exudate segmentation, as this lesion is only present in about half the images of the IDRID data set.
We chose α = 0.75 prioritizing the focal binary cross-entropy to smooth the Dice-loss but still benefit from the

†https://github.com/Lyken17/pytorch-OpCounter (last accessed: 02/16/2022)
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Figure 2. Comparison of the U-Net (purple: ), the differently scaled U2-Nets (blue: ), their counterparts with depthwise
separable convolutions (green: ) and the ensembles U2-Net-XS†, U2-Net-S† and U2-Net-M† (left to right, yellow: ) with
respect to the mean AUPR (mAUPR) across all lesions and the computational cost in MACs in single-task mode. Circle
size corresponds to the model’s number of parameters.

letter’s insensitivity to the class imbalance. Furthermore, we set γ = 1.0 for the focal binary cross-entropy forcing
the model to focus on difficult pixels rather than optimizing easy decisions. Moreover, deep supervision at every
depth layer of the network with equally weighted errors of all side outputs of the U2-Net is used to optimize the
model following the implementation of Qin et al.3 To this end, the binary target masks are downscaled to the
output resolution of each depth layer before evaluating the loss. In addition to the class-dependent weighting for
dual- and multi-task training, the number of epochs and the patience of the scheduler are increased to 600 and
800 as well as 30 and 50, respectively, to ensure model convergence.

At test time, we measure the performance of the predicted segmentation masks in terms of Dice-score (DS),
Area under the Precision-Recall Curve (AUPR) and Hausdorff-distance of the predicted segmentation to the
target mask. The threshold for computing binary segmentation masks and with this both the Dice-score and the
Hausdorff-distance is selected from the Precision-Recall curve to maximize the harmonic mean of both precision
and recall and hence the dice-score for each class individually. We include measuring the Hausdorff-distance,
which is computed using the Toolbox provided by DeepMind‡, as the Dice-Score is very sensitive to small
changes when dealing with only small lesions which is the case for microaneurysms and hard exudates. We set
the surface distance to the maximum value corresponding to the image size when no lesion is present but the
network’s prediction is not empty and vice versa, which is only affecting soft exudate segmentation as the other
lesions are present in every image of the test set.

6. RESULTS AND DISCUSSION

The results of this work are presented in fig. 2, showing the mean AUPR score with respect to the tested model’s
computational complexity as well as the number of parameters represented by their corresponding circle size.
Furthermore, in table 3 the lesion-specific segmentation AUPR score and a comparison to other state-of-the-art
models are presented. More detailed results of all ten individual training runs are provided in form of boxplots
in figs. 3 to 5 showing the lesion-specific AUPR, Dice-score and Hausdorff-distance, for both the regular and
depth-wise separable convolutional U2-Net models.

Having significantly more parameters compared to the U-Net and an additional depth layer, it is visible from
fig. 2 that the U2-Net-O expectedly outperforms the U-Net on the lesion segmentation task by 5.2% with respect

‡https://github.com/deepmind/surface-distance (last accessed: 01/23/2022)
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Table 3. The results on the IDRiD test data set for the different single-task models (if not otherwise stated) are given as
mean area under Precision-Recall-curve (AUPR) across the individual training runs per lesion excluding outliers with the
standard deviation enclosed in brackets and the overall mean AUPR (mAUPR) across all four lesions.

Model MA HE HX SX mAUPR

U-Net 0.355 (0.010) 0.555 (0.040) 0.747 (0.052) 0.639 (0.088) 0.574

U2-Net-O 0.309 (0.111) 0.605 (0.036) 0.766 (0.063) 0.737 (0.030) 0.604

U2-Net-O∗ 0.343 (0.012) 0.637 (0.020) 0.731 (0.062) 0.705 (0.022) 0.604

U2-Net-M 0.345 (0.030) 0.648 (0.015) 0.790 (0.048) 0.724 (0.045) 0.627

U2-Net-M∗ 0.318 (0.085) 0.622 (0.034) 0.730 (0.057) 0.716 (0.040) 0.597

U2-Net-S 0.345 (0.023) 0.606 (0.070) 0.760 (0.057) 0.686 (0.057) 0.599

U2-Net-S∗ 0.331 (0.030) 0.575 (0.037) 0.775 (0.064) 0.658 (0.049) 0.585

U2-Net-XS 0.318 (0.036) 0.558 (0.043) 0.774 (0.057) 0.615 (0.070) 0.566

U2-Net-XS∗ 0.209 (0.102) 0.418 (0.160) 0.701 (0.079) 0.552 (0.119) 0.470

U2-Net-S (DT) 0.370 (0.017) 0.632 (0.016) 0.753 (0.044) 0.697 (0.038) 0.613

U2-Net-S (MT) 0.349 (0.018) 0.510 (0.034) 0.723 (0.061) 0.707 (0.026) 0.572

U2-Net-M† 0.407 0.694 0.862 0.805 0.692

U2-Net-S† 0.402 0.678 0.850 0.795 0.681

U2-Net-XS† 0.375 0.639 0.852 0.743 0.652

Zhou et al.18 0.496 0.694 0.887 0.741 0.704

Yan et al.22 0.525 0.703 0.889 0.679 0.699

Guo et al.24 0.463 0.637 0.795 0.711 0.652

to the mAUPR score. Thereby, the most improvement is visible for haemorrhage and soft exudate segmentation,
while hard exudate segmentation is only slightly better and microaneurysm segmentation even performs worse
according to table 2. However, the U2-Net-O saves about 35.4% of MACs and hence only decreases the frame
rate slightly by about 9% from 30.46 fps to 27.71 fps showing the high computational efficiency of the U2-Net’s
architectural design. Unexpectedly, we observe the U2-Net-M to outperform the U2-Net-O except for soft exudate
segmentation despite the reduced model size and capacity. From fig. 3 it is visible that this mainly originates
from overfitting which is occurring for the haemorrhage segmentation using the largest U2-Net. However, further
downscaling the model, i.e. using U2-Net-S and U2-Net-XS, decreases the measured performance as expected.
With this, the mean AUPR of the U2-Net-XS is on average on par with the U-Net, however reducing model size
from 31.04M to 0.07M parameters and more than doubling the frame rate.

Additionally, the hard exudate segmentation AUPR- and Dice-score show an overall high variance across
the results. This in contrast is not visible for the measured Hausdorff-distance, presented in fig. 5, showing
increasingly good performance for hard exudate segmentation with growing U2-Net model capacity, underlining
the high sensitivity of the AUPR and Dice-score to small pixel level variations. This, however, do not affect the
lesion detection performance on instance level measured through Hausdorff-distance, indicating that measuring
segmentation performance solely through pixel-level metrics may not be optimal. Hence, looking at the Hausdorff-
distance for haemorrhage segmentation the decrease in performance for the larger U2-Nets, visible in the AUPR
score, is reduced, suggesting the overfitting to occur on pixel level. Although, computing Hausdorff-distance
for soft exudates is also not ideal due to the heavy penalty when no lesion is present and only a single pixel is
segmented by the model which leads to an overall high and noisy Hausdorff-distance.

Moreover, with using depthwise separable convolutions model performance expectedly is at most on par
or decreases slightly compared to the neural networks with regular convolutions due to the reduced model
capacity. While the decrease of the computational cost has a beneficial impact for the original sized U2-Net-O
as presented in table 2, the effect significantly diminishes for the smaller models. Exemplary, using depthwise
separable convolutions only marginally decreases the model size as well as required MAC-operations and even
increases inference frame rate comparing the U2-Net-XS to U2-Net-XS∗. From this, we reason that in the low
size regime of the tested architectures the reduced computational load using depthwise separable convolutions



does not compensate for the loss of performance. Nevertheless, this may be attributed to some extent to the fact
that the usage of depthwise separable convolutions is not fully optimized using PyTorch28 and thus also could
be different for more optimized toolboxes.

Overall, we reason that the U2-Net-S provides the best trade-off between performance and computational
efficiency when using individual single-task model instances. However, an ensemble of the three top-performing
U2-Net-XS models outperforms the former with respect to GMACs (−22.1%), model size (−24.1%) and mAUPR
(+8.9%) significantly. Equally, by using the ensembles U2-Net-S† and U2-Net-M† we observe a further increase
in model performance by +9.6% and +14.6% compared to the U2-Net-M and U2-Net-O, respectively, while
having less or similarly MAC-operations and parameters. Although providing the overall best performance, all
the ensemble models have very high inference runtime due to being serially executed in our implementation.
This, however, could be eliminated by parallelizing the model inference by exploiting grouped convolutions29 if
possible which on the downside would increase memory usage significantly. Referring to fig. 2, we propose to use
an ensemble of either the U2-Net-XS or U2-Net-S that provide the best trade-off between model performance
and computational and hardware requirements.

Furthermore comparing dual- and multi-task training, the former yields slightly better performance to the
single-task mode, in particular for microaneurysm and haemorrhage segmentation, while the letter visibly suf-
fers from the hard parameter sharing impairing haemorrhage and hard exudate segmentation, as visible from
table 3. As a result, using dual-task training promises a reasonable method to reduce the computational load
without significant loss of performance and is estimated to further increase the ratio between performance and
computational cost being used in an ensemble model.

From the comparison to the literature in table 3 and the official subchallenge-1 leaderboard,30 it is visible
that using the U2-Net architecture, in particular with using model ensembling, is achieving state-of-the-art
performance for soft exudate segmentation and is on par for hard exudate and haemorrhage segmentation but
not reaching the performance for microaneurysm segmentation. The letter is estimated to be caused by the
deep network structure preventing good convergence and the comparable low-resolution input image resulting
in a loss of essential information as microaneurysm lesions are typically only a few pixels wide. In comparison,
the L-Seg model proposed by Guo et al.,24 being based on a pretrained VGG16 backbone with additional side
outputs allowing for multi-lesion segmentation, is trained on high-resolution input images with (1440 × 960)
pixels and with this outperforms the U2-Net for microaneurysm segmentation. Similarly, Yan et al.22 proposed
a Dual-U-Net architecture comprising a fusion of a global U-Net predicting on the complete but downsampled
retinal image, a local U-Net operating on high-resolution image patches. In their paper, they show that this
Dual-U-Net architecture is boosting segmentation performance of small lesions like microaneurysms and hard
exudates. However, their results indicate that larger and more homogenous lesions, i.e. haemorrhages and soft
exudates are segmented best using only the global network. Moreover, Zhou et al.18 deploy model training
with (640× 640) sized fundus images and additionally exploit image-level graded data in a complex adversarial
training strategy with weak supervision to improve multi-task DR lesion segmentation performance. In contrast
to our findings, they show that using an Xception31-based U-Net architecture, which uses depthwise separable
convolutions in a more sophisticated manner, could indeed improve the segmentation performance over a plain
U-Net implementation using only regular convolutional layers.

However compared to the LWENet,25 the U2-Net-S is more than six times smaller and similarly fast on the
same image resolution. Despite the Dice-score of the LWENet being significantly higher as for the U2-Net-S
when pretrained on the DDR32 data set (DS=0.782% vs. DS=0.705%), the LWENet performs slightly worse
than the U2-Net-S when no pretraining is applied (DS=0.697%). Moreover, using the U2-Net-XS† ensemble
achieves similar performance (DS=0.779%) compared to the pretrained LWENet without exploiting transfer
learning itself and still being about six times smaller aligning the observations of Qin et al.3

7. CONCLUSION

From the presented results we conclude that (a) the U2-Net is an overall suitable architecture for biomedical
image segmentation, (b) the model architecture shows good performance even when no pretraining is conducted,
that is on par with and in particular for soft exudate segmentation outperforms current state-of-the-art results



using model ensembling (c) the downscaled U2-Net may be a suitable method for edge device implementation as
it shows very promising results in fine-grained lesion segmentation while having very few parameters and hence
low memory cost as well as a reasonable computational complexity for the task of screening retinal images for
lesions.

However, improving overall model performance, in particular for microaneurysm segmentation by using e.g.
multi-scale approaches, will be subject to future research. In addition to the already high reduction of model
size, further optimization of the computational load to performance trade-off for edge device deployment could
be achieved exploiting dual- and multi-task training as well as using more refined mobile building blocks, e.g.
Xception-,31 Squeeze-and-Excitation-33 or MBConv-blocks,34 and exploiting model-pruning and distilling. Also,
applying more sophisticated training strategies, i.e. adversarial as well as self- or weakly supervised training,
potentially can enhance model performance and help implement a transparent, holistic DR detection system
comprising both disease grading and lesion segmentation for use on edge devices.
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Figure 3. Boxplots of the AUPR score of the scaled U2-Nets over ten training runs for each lesion. Sorted by model size
in ascending order from left to right.
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Figure 4. Boxplots of the Dice-score of the scaled U2-Nets over ten training runs for each lesion. Sorted by model size in
ascending order from left to right.
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Figure 5. Boxplots of the Hausdorff-distance of the scaled U2-Nets over ten training runs for each lesion. Sorted by model
size in ascending order from left to right.
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