A D-WULLING S SIEN

UNIVERSITÄT ZU LÜBECK

Student Projects

MPC and Path Planning of a Ballbot

Project Summary

Controlling a ballbot from a **digital twin** design remains challenging. The project aims to integrate an equivalent nonlinear system embedding, e.g., **linear parameter varying (LPV)** along with **nonlinear model predictive control (NMPC)** to enable **real-time balancing and motion** planning through **complex safety-aware environments**.

Project Types

- BA thesis 3 months
- **MA** thesis 6 months
- **Praktikum** (3->6) months

Project Potential Objectives concerning time/level and will

- **Studying** the fundamentals of MPC and nonlinear embeddings
- Investigating the dynamics of such a challenging system
- Data-driven model discovery and system identification
- Online optimization tools for real-time implementation
- Theoretical analysis on stability & recursive feasibility

Required Qualifications

- Basic courses in automatic control
- Programming skills, e.g., Matlab/Python/C++
- Motivation for using Infineon/Raspberry Pi hardware

Contact

- Dimitrios S. Karachalios, <u>dimitrios.karachalios@uni-luebeck.de</u>
- Ievgen Zhavzharov, <u>ievgen.zhavzharov@uni-luebeck.de</u>
- Dr.-Ing. Hossam S. Abbas, <u>h.abbas@uni-luebeck.de</u>

Detailed Description

A ball balancing robot, also known as a ballbot, is a dynamicallystable mobile robot designed to balance on a single spherical wheel (e.g., a ball). Through its single contact point with the ground, a **ballbot** is omnidirectional and thus exceptionally agile, maneuverable, and organic in motion compared to other ground vehicles. Its dynamic stability improves navigability in narrow, crowded, and busy environments.

Nonlinear plant (model)	NMPC as Quadratic Program (QP)
$\dot{x}(t) = f(x(t), u(t)) \xrightarrow{\mathbf{LPV}}_{x_k = k\Delta t}$	$\min_{u_{i k}} \sum_{i=0}^{N-1} \ell(x_{i k}, u_{i k}) + \ell_f(x_{N k})$
$x_{k+1} = A(p_k)x_k + B(p_k)u_k, \ k = 1,.$	subject to $x_{i k} \in \mathbb{X}, \ i = 1, \dots, N-1$
Prediction $x_{i k}$: the <i>i</i> th prediction at time <i>k</i> $u_{i k} \in \mathbb{U}, i = 1,, N-1$	
State & input constraint sets X, X_f , U $x_{i+1 k} = A(p_{i k})x_{i k} + B(p_{i k})u_{i k}$	
MPC can handle physical constraints compared to other control methods. $x_{0 k} = x(k)$ $x_{N k} \in X_f$	
$u(k) = u_{0 k}^{*}$ Nonlinear plant $p(k) = p_{0 k}$ $x(k)$ $u_{0 k}^{*}, \dots, u_{N-1 k}^{*}$ MPC	
The new IME ballbot Modeling	& Control Balancing & Motion

Selected References

- M. Studt, I. Zhavzharov and H. S. Abbas, "Parameter Identification and LQR/MPC Balancing Control of a Ballbot," 2022 European Control Conference (ECC), London, United Kingdom, 2022, pp. 1315-1321, doi: 10.23919/ECC55457.2022.9837996.
- T. Fischer, I. Zhavzharov, D. S. Karachalios, and H. S. Abbas, " In preparation "

Digital twin of a ballbot